Episodes

Tuesday Apr 17, 2018
SKA Africa Telescope and Multiboard PCB design
Tuesday Apr 17, 2018
Tuesday Apr 17, 2018
Omer Mahgoub, Electrical Engineer for the Square Kilometre Array (SKA) Africa talks about the project and shares how he got started in the field of PCB Design. Join Omer and Judy Warner for a conversation on Multi-board PCB design in the context of extremely sensitive devices.
Show Highlights:
- The goal of the Square Kilometre Array is to be the largest radio telescope in operation.
- Bigger and more sensitive
- Project scope - built in South Africa and Australia
- Meercat is 64 / 25% of project - Phase 1
- Next phase - Australia 158 low frequency range antennas
- Multitudes of BGA Fanouts, tight pitches, narrow tracks, etc.
- Extremely sensitive device, signal integrity is crucial
- One aspect of project is to develop local economy, so we are working with local manufacturers to improve manufacturing technology. There is a lot of giving back involved in this project.
Links and Resources:
Omer's comedic AltiumLive presentation recording
Omer’s AltiumLive presentation slides
Hi this is Judy Warner. I'm so excited to introduce you to another AltiumLive 17 Alumni speaker which is Omer Mahgoub from SKA in South Africa and he has been designing really complex boards for the SKA - which is the Square Kilometre Array - telescope and I'm gonna get out of the way and let Omer tell you a little bit about the SKA if it's something you don't know about.
So, Omer welcome and thank you so much for taking the time to tell us a little bit about your work.
Hi Judy thanks for having me, it's a pleasure to be here thank you to the SKA - which stands for the Square Kilometre Array. She SKA is a radio telescope project that's currently being built in South Africa and Australia and its goal is to be the world's largest radio telescope upon completion. I'm not sure if the listeners are familiar with what a radio telescope is but essentially, as opposed to an optical telescope, which is what most people are used to, and you look through to see the Stars and the planets. The sky a radio telescope receives radio signals. So in essence it's a large satellite receiving radio signals.
Okay. So tell us the purpose of the data you're collecting in those large receivers - what type of data they're receiving and what the purpose is?
Okay. So there are different purposes for radio telescopes. One of the main reasons is to observe the galaxy and to understand how the galaxy was formed and to understand how galaxies evolve today. Also, how they rotate and also their location, what has shaped them, and so on. Also to track new galaxies that are forming and to just map that journey. There are other purposes for example to study the earth’s magnetic fields that help guide birds and bees and compass needles and also to study interstellar gases. Another reason which most people might be interested in, is also to detect other types of life out there. Not necessarily aliens, but any any objects which might be occurring in distant planets.
Mm-hmm fascinating.
So, all the big questions of life.
That’s exactly it and which is why a lot of questions have not been answered so far by existing telescopes which is why we need to go bigger and more sensitive.
So tell us a little bit about the scope of this project. I know it's massive - and what parts of the SKA are up already and when is the due date that they feel this will be completed?
Okay so, initially when this project was started it was going to be a big process between different countries for the hosting of the telescope itself. Of the location of the telescope and so initially, the three countries that were supposed to get to be hosts were Argentina, South Africa, and Australia. South Africa and Australia, their bid went ahead and it was between the two of them and it was eventually decided that both South Africa and Australia would host this. So the actual location of the telescope will be in both South Africa and in Australia. There are a number of member countries involved in this project since it's an international consortium of countries such as Brazil, France, Japan, Malta, South Korea, Poland, Portugal, Russia, and Spain. African countries as well as Botswana, Ghana, Kenya, Madagascar, Mauritius Mozambique, Namibia and Zambia. So one source in South Africa who were bidding - they had to build, what they call pathfinders or cursor telescopes - to prove that they were capable of this. So the significant project at the time was called Meerkat which is what we are currently busy with here in South Africa and by March or April of this year that should consist of at least 64 receivers or telescopes. And then this will essentially be phase one of SKA.
Ok so Meerkat is those 64 telescopes?
Yes.
Okay with 64 telescopes making up phase 1, which towards the end should have at least 200 dishes.
So 64 is quite a quite a bit of the project really? I mean it's what - yes over 25 percent of the total project?
Yes.
Yes so, that’s for phase 1. Just to explain a bit further between the two phases. For phase 1 there will be the 200 issues including 64 Meerkat dishes but in Australia it will be 150 000 antennas for a low frequency range. So the frequency range for meerkat is between 350 to 14 gigahertz and then the low frequency antennas in Australia will be between 50 megahertz and 350 megahertz that's a lot of power.
I can imagine the boards that you make - right away my mind goes to the boards and is that just antennas? The antenna portions of the board I mean, this is kind of a novice question but how do you achieve that kind of power?
So just to explain a bit further on where I'm based with the team in South Africa. We work on what is called the digital back-end and what the back-end is responsible for is that it basically is to receive the incoming radio signals from the dish which are analog signals and essentially digitizes so you can imagine our boards are mostly to digitize these signals and just perform the processing in them.
Okay understood, very good. Going onto - so since you're doing it would it be fair to say that what you're doing there in South Africa and just sort of a little bit of the heavy lifting of this project then?
Yes you could say that.
Yeah, so tell us a little bit about specific challenges of designing these boards. I know before we got on the phone you were talking specifically about BGA fan outs. Can you talk about that and and what kind of size BGA's that you typically work with and then how you address the fan outs for those?
For those we deal with a lot of FPGA processing boards and a very high density board. Very high density BGA is starting from around 600 all the way to over thousand volts. Very, very narrow pitches of less than a millimeter point six, and six millimeters so it becomes very challenging to fan out and route all the signals in between which is why I was really glad to see all the advances on Altium 18 during the summit last year which would have made our work tremendously easier and thinner.
Yes.
But we will definitely be using those and so that's one of our biggest challenges - definitely to fan out signals and the multitudes of high-speed signals that we have running on these boards.
Have you have you had the opportunity yet to transition to Altium Designer 18?
Uhm, not yet because we're still creating our existing designs on the existing version of Altium but for which every new design that we’ll be moving onto we will definitely be on Altium 18.
Okay those are really tight pitches and I don't know how you guys do that honestly! It boggles my mind that's incredible! So talk a little bit more about the high-speed signalling and what kind of challenges that poses for you and and how you address them?
So some of the biggest challenges of this telescope is that it's an extremely sensitive device so signal integrity is crucial for our boards. And one of the main issues we have especially in South Africa, is manufacturing capability because the electronics industry is not very big here. So having to send out a board with such narrow tracks and with these kind of technicalities - a lot of our local manufacturers are unable to actually manufacture them - so it becomes really tricky because another aspect of the project is also to help develop the local economy. So we've been working very closely with some local manufacturers to help them get the equipment and expertise to be able to manufacture these kind of boards.
Yes, so tell me a little bit more about that. As one from the bare board industry and where I was focused on actually high-speed boards for a long time, that's really fascinating to me because these boards are not easily made and there's not that many in the whole wide world actually that can build consistently and reliably in that sort of phase you're talking about. So how do you go about and and where's the funding and how does that all work?
So, for example, some of our latest boards had buried vias buried and blind vias, and the manufacturers here do not have the equipment to be able to manufacture or to be able to make those. Some of them who can were able to get some government grants to buy some new equipment specifically for this project. So we were very happy to have that. Even the etching process for these narrow tracks is also quite complicated as opposed to your regular levels.
Mm-hmm.
Though as they are getting up to speed some of our initial board that we needed unfortunately had to be manufactured in China because we needed the quantities. But for the boards for which we were still prototyping we were able to successfully manufacture those here in South Africa and we were quite pleased with the results.
Oh that's wonderful! I love to hear that you're able to help through the SKA, help grow the economy and bring some technology there, that's very exciting.
Yes that that was one of the critical aspects of the SKA because the location of the SKA is also good, because you need a very radio quiet zone with no cell phone interference and that sort of thing. So it's actually based in the middle of the desert and that's also how the location has helped to uplift the community because now, you know, schools get to benefit from that a lot of extra jobs are created as well so there there is a lot of giving back involved with this project.
I love that, oh that's really great news - and you know, sometimes people say, well why go to space? Why build things like SKA?
Yes a lot of people always tell me, why is so much money being spent on this, when it can be spent on housing or help to fight poverty, without realizing that this does actually help people to uplift themselves.
I couldn't have said it better because what you realize is, when you do start doing some of these things, not only is the data that you will collect helpful and us really understanding the universe and probably have practical applications. It does really help fuel communities and put people to work and grow your seed community. So I think that's a really lovely backstory.
I think there's been thousands of scholarships already for people to get into science and engineering from this project.
Tell me a little bit more about that?
So a lot of times people, for example from the town, where the telescope is based, a lot of student’s studies are being paid for and all of them are being sponsored to attend University especially in the STEM fields. Because once this budget is complete we are going to need a lot of astronomers and engineers to work on this telescope because this is a very long-term project. I mean it's only expected to be completed around 2024 so, by that time we would need to develop the skills for people to use this and to maintain it.
That's incredible. So speaking of students how in the world does Omer Mahgoub from South Africa end up working on the SKA? You know, based in a remote area. Tell us a little bit about you and how you came to the field that you are?
All right so I studied electronic engineering, at the University of Pretoria which is about 1,500 kilometres from here, from Cape Town, and I was previously working in the electronic defense industry - about four or five years - and then I think at some point my CV was online and I wasn’t actively looking for a job, but my CV just happened to be online and I was contacted for this. And since this was in a different town, I wasn't really considering moving at the time, but I just decided to go for the interview anyway and once I got it, I started to seriously consider it and I saw what a great opportunity it would be, and I decided to accept. And it's been six years now.
That's a great story. So Omar do you remember being a kid and kind of naturally being drawn to how things worked and how did you know to choose that major?
So, I was always interested in gadgets and was something that I enjoyed. I enjoyed gadgets - but I feel like my parents actually fooled me into studying engineering because as a kid, I used to love the TV show MacGyver and I would always ask my parents, like you know, what do you see? What did he do? And they would tell me, no he's an engineer that's what his job is, and ever since then I had wanted to study engineering and it was only later on that I realized that they had actually lied to me.
God bless parents.
Yeah.
But I'm glad that they did.
Yeah well, you obviously wouldn't have lasted long if you didn't have sort of a propensity for it. So they must have heard something right? I knew a fellow, Omar, that told me once he was an electrical engineer and he was part of the early development of chips and that actually, just the 256 K chip, you know, way back in the olden days and he was from a small town in the Midwest and he saw some men climbing telephone poles and he asked his parents, what does that guy do? And they said he's an engineer so he's like, that's what I'm gonna do, I'll be an engineer. Because he wanted to climb telephone poles. Then he got to college and he's like, you people are never gonna let me climb my telephone pole are you? But then he ended up being quite a genius guy developing chips.
So hopefully he’ll get to climbing.
His son went to Princeton, I think there was some brains in that family by the way. So yeah, I don't know that he ever got to climb a telephone pole! So, well can you share some websites cause I'm sure there are some incredible photos. I know I've seen some let's share the websites where people can go both to your local website and to the the international website.
So our local website, SKA Africa is at www.SKA.co.za and the International site is https://www.skatelescope.org.
Very good. So I always ask people at the end of this podcast is that you're now shifting to what I call ‘designers after hours’ so I think there's a lot of artistry and creativity in designers like you. So what kind of interesting hobbies or things do you do in your spare time?
In my spare time I - well naturally I enjoy video games - I love playing video games and I'd like to consider myself to be a sporty person. I love playing tennis and soccer. I try to play at least three to four times a week. The thing is that I try to stay active you know, especially after sitting in an office all day, staring at your computer screen.
Yeah that totally makes sense. What would you say; would you say you were a geek or a nerd?
I would say neither, but perhaps more of a nerd.
Well you're more of a nerd, well probably with the stuff you're working on?
I'm not gonna argue with that one.
Well it's been a delight to speak with you Omer. Is there anything else you'd like to share that we haven't covered perhaps?
No not really, but I just want to say that I'm really excited about getting to use Altium 18. I'm so envious after having seen all the videos. I've actually installed it and played it on repeat but I'm looking forward to using it and seeing how easy it will make my future designs.
Well we're excited for you to use it also and we hope that you'll have the opportunity to come back to AltiumLive 18. We will make sure to post Omer’s presentation below where he spoke and had some incredible slides. And not only that, he was like a stand-up comedian and I stepped into his session and I was trying hard not to laugh really loud because they were filming. But he’s been the straight man during this call but he was really funny. Like tell the audience why the United States is not part of SKA?
That was not supposed to have been - I still don't know how I didn't remove that!
I love it, no tell us...
So the United States they're even they they're not part of the SKA is because they would have insisted that it be called the Point Three Eight Six Square Mile Ratio.
It's too wordy.
Yeah SKA, it's way easier.
Yeah well, we will definitely post your your presentation below, both the video and your slide deck because there are some beautiful photos in your slide deck that show some radio telescopes and some sites that are really inspiring. And the scope; it boggles the mind, so we will be sure to share that.
So Omer, thank you again so much for sharing your experience with us and we hope to talk to you soon. Especially after you've gotten onto Altium Designer 18 and give us some feedback so we can make it better.
Definitely will do, I'll try to find some bugs.
Okay it's on!
Thank you Judy.
Thank you so much, this has been Judy Warner with the OnTrack podcast. Thank you for joining us and we look forward to seeing you next time and until then always remember to stay OnTrack.

Tuesday Mar 27, 2018
What is PCB design? With Kelly Dack and Judy Warner
Tuesday Mar 27, 2018
Tuesday Mar 27, 2018
What is design? Have you been inside a board house? Join Altium’s Judy Warner and Kelly Dack, CID+, for a lively conversation about PCB design and becoming educated in the field. From CID and CID+ to visits to your fab house, learn how to learn for PCB design and where some of these resources are available today.
Show Highlights:
- Design has to do with a breadth of knowledge. The design tool is only as good as the breadth of knowledge of the designer.
- Eric Bogatin’s PCB bootcamp-style at the University of Colorado provides exposure to the manufacturing
- Dreaming a product and then embedding the process steps within the layout
- You can control so many things in Altium Designer - setup constraints, DRC rules, etc.; designers need to know how to manipulate these constraints so it will yield the best results for the stakeholders in the prTocess.
- To design is to be in touch with all the stakeholders.
- Everything in CAD are nominal values / nominal data
- Without recognizing manufacturing tolerances, we’re doomed.
- Certified Interconnect Designer or CID Certification, from IPC, teaches the start to finish manufacturing process
- Eat, sleep and breath PCB design at AltiumLive 2018 - the largest conference in the world focused exclusively on PCB design
- With Altium Designer 18, “I’m finding it easier to communicate with my mechanical cohorts”.
- Dream feature: Snap back and forth from min to max toggle
- Merging the mechanical and the electrical: Mechatronics
- Design in prototype vs .production - what is sustainable in prototype environment might not work / be scalable in the production environment
- A challenge for everyone: go visit a board shop!
- Fun facts: Kelly has a hobby farm and plays harmonica (and guitar!)
Links and Resources:
Eric Bogatin’s University of Colorado PCB design program
Certified Interconnect Designer or CID Certification
AltiumLive 2018 - save the date!
Hi everyone this is Judy Warner with the OnTrack podcast. Welcome back, we are recording today from Design Con 2018 in Santa Clara California. Today I have another amazing guest, Kelly Dack and before we get started I want to make sure that you subscribe on your favorite RSS feed and also please follow me on LinkedIn or on Twitter at @AltiumJudy and Altium is also on LinkedIn, Twitter and Facebook. So, please give us a follow and we'll continue to put out as much good content for designers and engineers as we can possibly razzle.
So today I am with Kelly Dack who is a PCB designer. Are you CID or CID + ?
CID +
CID+ so he's a hotshot. So a designer for many years, currently he is with a Northwestern EMS provider and…
How many years have you been in the industry Kelly?
Well too many dimensions, thanks for having me Judy.
I know, I know...
But I thought you're gonna introduce me; look what the cat dragged in.
Yeah no…
- well no but yeah I've been in the industry since 1978 something like that.
Okay well longer than me so yeah, I don't like to say when I started either, but I think I started in ‘84 I know Wow I know I don't want to say how old I am but it just automatically dates me so Kelly so we're here at Design Con and I know you have a completely broad perspective of this industry because you've been on the journalistic side, you've been on the design side, you know about fabrication. Now you're on the MS side, you just mentioned that the design that's being done at your current place - that you have Altium designer so we like you better already. And so tell us, you and I started to talk… I'm just gonna let you roll because I know you have a wealth of things to share. So start out with… ready? What is design?
Wow design... I've been talking about that with the cohort of mine Andy Shaughnessy all morning because we come to a show like this and we're talking design relative to high-speed and things measured in gigahertz.
Right.
Things like this typically the engineering crowd of the degreed crowd but they have to relate also. The stuff has to be translated into the classic or traditional PC board designer. There's been a lot of talk about the two merging, there's been a lot of talk about where's the next generation of the PCB designer coming from.
Oh yeah.
Now that somebody told me yesterday, you know, these guys are all dying out and I chuckled. But you know it's a fact that we're all at least hopefully retiring happily so that this generation of folks that started in the 70s doing board design and earlier, are moving on and there's been a concern about where the gap is going to be filled and a couple years ago I had a chance to have a brief stint in the Seattle area and I found the answer to that question. I worked for a Prototron for a brief period…
Yeah, oh my goodness…
- and part of my job was to reach out to designers in all of the Seattle area and so my job was to go in, drive downtown shake hands with designers and turn them on to the great things that Prototron does. Well these these people were not old designers - these people were young, hip. People that had just graduated at a university, had picked up the design tools and because they're quick studies and they're smart they learned it in a matter of weeks. At least that's what they make it seem like, yeah they're quick studies and they were laying down tracks right and left and my job was to go help them from the standpoint of how they can make their designs flow through our shop a lot easier.
Right.
So it was a little customer liaison, engineering liaison, so I was very surprised to find out that the designers are out there now.
They're out there. By the way Kelly I've talked a lot about this and if you actually read my newsletters that I sent you... just kidding, just needling you a little bit. I've actually found since I've been at Altium the same exact thing you're finding is that one, this next generation, they basically came out of the womb with a smartphone in their hand right? Playing computer games, so they learn so much faster and in the case of Altium and we’re certainly not the only ones out there who are sponsoring engineering teams and universities and so much now right? Engineers are laying out their own boards. It's not a distinct role and so these kids are bright and they're quick, and now I'm seeing globally... I would have never seen it had I not been where I am now. But I see exactly I would echo your exact thoughts is that I see them everywhere they're on Hyperloop teams, they're on SAE you know. Formula teams, they’re on there and engineering groups, there in space teams and and they're learning to lay out boards in college. And in our case we're gifting the software right, so they have a tool; a professional tool. So when they graduate it's easier for them to get a job - so I see it I and I'm so glad to hear you say it, because I feel like the only one that's kind of like, don't be afraid people, it really is gonna be okay
Well check it out now; the product is called Altium Designer and there's a lot of designer based products out there that infer and rightly so. It’s a very powerful design tool. But back to your question; what is design?
Design has to do with a depth of knowledge that's gained not necessarily by a design tool. A design tool is only as good as the knowledge of the designer, the knowledge base of the designer so what I mention (and what was fascinating) - working at a prototype bare board supplier and now - what you didn't mention - but I work at an EMS provider doing assembly work now and there's a similar stream of challenges and the same problems and issues that we would see at the bare board supplier. That needed coaching or mentorship for the designers are happening and echoing through to the assembly suppliers right. So we're seeing problems like copper pull back from the board edge. Who knows how much that needs to be. In other words if if a designer is going to design, they need to consider all the stakeholders of the process who's going to be building this board. What are the processes that are involved in building this board and there's many there are many.
Many, many along the way.
Many yes, and this is, I think many would agree, that's what's maybe - I've never taken one of those university design courses - but I know they go fast and I know sometimes they're measured in weeks not years,
Exactly. Except I will tell you I don't mean to interrupt your thought pattern here but I was overjoyed and I think you'll be glad to hear this too and maybe you already know this that Eric Bogatin is teaching at the University of Colorado, Boulder so you know he he and a colleague have written a curriculum that's PCB design with manufacturing and assembly best practices included.
Right.
Right, holy cow, like to me that's like the motherload because it's in context! Like you said of all the stakeholders so, anyways continue on.
I know Eric's really good at boot camp philosophy right? Hit that ground running but you know, know where the ground is, and be able to… I can't imagine he's not, you know, encouraging the folks that go through his programs - I can't imagine he's not encouraging them to go visit.
Yeah.
Boots on the ground. Support supplier, and they send me the supplier so they can see and meet the people who are doing the work. So back to design what is design. Design has to do with having a product - dreaming a product - and then embedding or creating all the process steps within the layout so to speak. Maybe that sounds too simple but from the standpoint of what can go wrong - things can go wrong as a new board designer starts designing. One of the things that the software tools are - the layout tools are doing so well, is they have a lot of movement is - is this a word? Manipulatable constraints set up.
Right.
Constraints, DRC rules and things and being a relatively new user to Altium I am amazed at how many things you can control and Altium - it is just amazing now, from a new user standpoint, that can be a blessing. But that can be a curse because all of these setups are are off-the-shelf setups. There are default settings right? So what a designer - to be called a designer - needs to be able to have the knowledge of doing, is manipulating those constraints so that it will yield the best outcome for all the stakeholders in the process. What do I mean by stakeholder?
Yeah I was gonna ask you that.
So we can't as a designer, a true designer, we can't design in a vacuum. We can't have our own office in our own world and live in a vacuum and think that this product we're creating, this chunk of clay - I'm bad at metaphors - this chunk of clay is going to be beautiful when we're done with it. Because there's nobody else looking at it. What I'm trying to say is design has to do with reaching out and considering who is going to be putting this thing together. It's not the designer typically right? The designer is not the one plating and etching right, we define things like stack ups. We define trace widths and via sizes and placement things right? But what do we base those things on? This is at the core of design. What are we basing these design attributes on? And without getting out and shaking hands with the stakeholders in the industry right, the bare board fabricator for instance - the engineer that may have designed the schematic, the test folks. The people that are going to be having to test this board. The assembler, the people that are going to have to be putting the stenciling the solder paste onto the board and applying the parts. Who else is down the line? The customer the overall..
What about the box builder, or you know maybe interconnecting devices maybe cable harnesses?
Sure, I'll keep it short - to design is to be in touch with all the needs of those people the stakeholders of the and their processes okay.
I 100% agree with you I've been beating this drum blogging and writing about it for a long time except I feel like people look at me and go... I remember one old-school guy that I've known for a long time - he goes it's so girly because why would you have a relationship with your fabricators?
Girlie what the heck! Like it was just sort of a silly comment but my point was; you can't design in a silo just like you're saying, you can't design in a vacuum if you don't have that design intent. One has to be communicated, and you have to need to know you can design something amazing and are not only Altium. All the EDA tools out there are extremely powerful and they can let you do really stupid stuff from a manufacturer standpoint. So do you get to be the Wizard of Oz and then it's completely unbuildable on the other end you know.
So if you're not in touch - now I'm gonna ask you a loaded question - I know you Kelly, you've been in lots of board shops and EMS shops and you're very well connected to that stream of stakeholders. How has your CID/CID+ helped equip you for that? Has it, or does it equip you more theoretically and then you gotta go get your boots on the ground?
Wow not a loaded question at all.
Okay I just don't want to get you in trouble at IPC, if you understand.
Not at all. I’ve got to say I went for my CID back in the 90s while I was during my time down in San Diego and it it had been an evolving program and I paid for it myself. I was at that point where there was no convincing a company - a telecom company - that hey there's the certification that will help give me an in-depth knowledge of all the processes and it wasn't happening. So I went and did it on my own dime and that was CID and that was a long, long time ago. A lot of has happened with the program and with technology since then, but I've got to say that the thing that I loved about it was that it described the stakeholders of the process. It defined the start to finish process of how to manufacture a board, how to document a board for manufacturing and for inspection, and even explaining that that the fabrication drawing is not as much of a how-to document as it is an inspection document. We're not telling - with a fabrication drawing - we're not telling the supplier how to do it. They know how to do it with the data right, they have all the data in the world that tells them how to do it.
But there are parameters that right?
There are parameters but the difference is they are nominal parameters. Everything in CAD data that we know of is mostly nominal data right? You lay a linewidth down at seven mil - 7 thousandths of an inch wide. If you think that that line is going to end up 7 thousandths of an inch wide on the board when you're done, you may be in for a surprise. You know it depends on manufacturing tolerance and without recognizing manufacturing tolerances we’re doomed.
Right so let's just say that. You know this gets a little crazy to me is because a lot of engineers have not had the benefit of being inside a board house and because they are used to using a lot of physics phased holes and stuff. They think it’s 7 mils - make it 7 mils - if you don't understand how the printed circuit board is made, the print edge process, what happens inside of an etching bath, it is not possible. Let me tell you engineers - I don't mean to be condescending at all - it's that I really care about this that it cannot be made perfectly seven mills ever.
Yeah.
I mean it's that's why we have tolerances plus or minus this or that but now with these high speed stuff it's like: oh yeah can you give us a 1 mil trace,plus or minus zero and I'm like NO. No no no no...
Yeah well, very very important to understand that and like I said - back to the CID program from IPC. I had gone on, years later I went back and did the advanced. The advanced portion of that course, the CID+ and I gotta say that then I didn't go job jumping very often, but when I did, in this particular case, I was able to list my CID and they seemed to scratch their head a little bit at the interview process but I was able to define or describe just what I've described to you about about some in-depth knowledge of the processes and the people involved. That's when I got their attention so this is what I'm saying: that the CID program helps that in a lot of ways and CID+ all the more, goes into more advanced processes and ideas about circuit boards.
Fast forward to a few years ago, I was invited and Gary Ferrari was invited - to help instruct on the program. So I get my certification to teach - I did that - and let me tell you that is wonderful. To take a class of 10 or 20 people through the materials that have been evolving, but are now pretty much set in stone, is a real solid curricula for what was a three day class. Three days of intensive review of materials that the students had been studying for months. Now it's a four-day - we've expanded. I was going, there's so much information in there, it's expanded to a four day class and the pressure that you see on some of these students faces as we're getting toward test time - because it's an exam. It's an audited exam, very official. There's a lot of pressure and let me tell you that the pass rate is very, very high now because of the the level of training and the level of study materials. I mean you need to study this material it's not easy. We're condensing a lot of material into a four day class. The expressions on some of these designers - they are designers - but now they have more of an in-depth knowledge of design, what design is. You know it's stakeholders and its processes, and it's materials and things that now we're giving them is a lot more in depth. When they pass that test I have had people jump and hop around and clench their fists and say, yes! They're so happy to have done this and it's really gaining traction, as far as a certification. We talked about University classes and you know maybe those are measured in weeks.
Yeah well, and CID, like you are saying really has to do with the stakeholders you mentioned.
Right.
We're in the university, as you said, I've heard some professors say, yeah I teach the printed circuit board design but don't be impressed it's three 50-minute classes. One on schematic, one on routing and one whatever...
Yes and let me tell you I was in 3rd grade classes and 4th grade classes where at least we’d jump on a bus and go visit the fire strips right. We talk about the fire station but at least we hold hands and I'll walk up to it or you jump on a bus and go see it. I'd like to challenge all of those University professors right now to to get their students on a bus and go visit a board shop or an EMS supplier I mean brother.
No I feel the same because I think there really is a disconnect there and sometimes, honestly on the board side, there's a disconnect in our understanding of what the designers are and sometimes we’re like - errr we treat them like... Instead of partnering with them and going, what are you trying to accomplish and how can we get together and move you in that direction? So it can go both ways, it's not just one way.
Absolutely I didn't get a chance to attend the Altium event.
Yeah Altium Live, well don’t miss it this year.
Well I have heard so many great things, I mean, powerful, powerful things from people that attended and the people that were there-
Thank you.
-The notables that were there speaking.
Oh yeah, we had the big guns there yeah.
Yeah but but speaking along those lines I think again you and I are just lockstep on this issue and when I began at Altium they said, ok we're gonna give you a team to pull this event off Judy, but you're gonna run the strategy and you're gonna get the speakers and I'm like, ok. And so I'm like designers need to hear from other designers right? So it's not just theoretical but they also need to hear from fabricators, assemblers. They need to hear from the whole gamut. So we did a call for papers but we also had people talking about what you need to know when you're designing Flex circuits, because you might all of a sudden have to be doing flex or rigid flex and you didn't have to do them before. Or multi board systems, so you know we worked to kind of sprinkle that in throughout. And then also have sponsors who were there that they could interact with and, boy I knew it would be a good experience but I didn't know how good. Kelly, I can't wait you have to come this year.
Yes, yes sounds very holistic PCB design - holistic - but yeah amazing.
Yeah holistic, sounds very Zen.
And what we tried really hard not to do was just to beat the Altium drum like sell/buy our stuff. Here's our new... of course we're proud of our tools and our new releases. So out of two days we took two 45 minute slots for ourselves and the rest was about them. Resources, plugging them in and I remember Laurence, my colleague, saying oh my gosh these people - it's like they're really inches away you know - as far as functionality goes - but they never talked to each other and I said, exactly right, and so to put them all together and the energy was just absolutely electric. So yeah come, come again and yeah yeah we would love to have you. So that's been truly a highlight of my career honestly, to see that all those light bulbs go out probably how you feel after you teach a CID class you know.
The afterglow.
Yeah the afterglow. Yes we were all singing kumbaya and so - oh good I heard great things - thank you, thank you. It was really it was a blast and it was a giant team effort you know I'm not tooting my own horn at all, I just got to go get the speakers and oh my gosh our team worked really hard to do all the logistics stuff and they did an amazing job.
So I'm dying to interview you and I'm trying not to. I know I'm being interviewed I'm just dying to ask again. Being a new Altium user I know version 18’s out and I don't want to ask you about it because that would be me interviewing you. But as a new user I have to say that I'll confess you know, a lot of this 3D capability that I haven't been exposed to in the past and now, becoming new to it I've got to say it's it's a lot easier than I thought it would be and like I say, Altium is my first tool to have introduced me to that. So that's where the industry is going and I found that it's pretty easy now to communicate with my mechanical cohorts you know.
Yup, because that’s our goal.
We're back to design - the design flavor of our discussion. It's not only electrical constraints that we're talking about but there are mechanical constraints and we talked about everything being in CAD being in nominal values in CAD so there's a natural dialogue that designers, in order to design, have to have with each other with regards to these nominal settings and these nominal layout features and geometries. So 3D CAD - 3D capability step files and things, have made things a lot easier to visualize and you can check alignments and things. But again I want to look at - I'm still learning how to use the tool in consideration with tolerancing. I can see a very nominal conditions like a mounting boss and nylon mounting bosses centered within a hole on the board. It looks really nice but I know that that hole is perfect in the step file I have to consider, as a designer, what kind of tolerancing - that locational tolerancing - and diameter tolerancing that that hole has. So that's something I have to encourage myself, admonish myself, without trying to admonish others. My purpose here is to inspire others to consider beyond the nominal condition. So I'd love to see the tools of the future as they evolve. Be able to address that somehow and you know, about the best we have in the design world is to design our maybe our part bodies at a maximum material condition or something like that.But wouldn't that be nice if we can if we get to toggle back and forth we could snap back and forth.
Yeah yes - min to max. I was picturing in my mind if you could open and close down that hole and see.
Yeah and i can see our R&D guys right now screaming when they're listening to this.
It’s encouragement you know that might be somewhere that we're going - there's a term that I'm loving right now, that's a buzz term that's been out for a while. I I guess where the industry is bringing together the electrical constraints, the electrical designers, and the mechanical designers which theoretically all are going to become merged into one designer pretty soon. Sooner than we know and as it it's called mechatronics right?
Yup.
And I've heard there's courses being taught in mechatronics and it's just that, to me, is an inspiring place to go. I'm too old to go to school again I know. I feel like I'm in school every day you know, we're learning new software tools and things. Every every day we go to work and we we lay down trax or have to address problems. It's like a new day in school: are we gonna ‘BS’ our way through something or are we really gonna get into what's going on here and learn about it? And you know, that may mean a call to the supplier. How do I handle this? What are your capabilities? And not forgetting that just because we talk to that one supplier that doesn't mean the rest of the suppliers have those capabilities and other things. That's where we're kind of freestyling...
Yeah we are freestyling.
That made me think about pet topic and that is prototype versus production. How do we design and prototype versus how do we design a production just because we can go to a supplier that'll quick turn a board for us in a few days.
Yeah
The biggest mistake - let me go with a case scenario - the biggest mistake I see engineers make, some designers - is they'll get a design made at a quick turn board house and guess what they'll get it back into their shop, they'll give it to a tech have it assembled. You know what, that thing works perfect okay, and it's made with all these special core materials and special weights of copper. It's been printed and etched just fine. It's got purple solder mask just like it's specified and then because it's working perfect they say okay let's go to print and they want to go order a million of them. But that prototype shop’s not going to be able to make a million of them right. So you know, what's going offshore? So, what do you think's gonna happen to that specialized recipe? The designer, the engineer has to cut and paste the actual recipe of the design onto the board?
What's going to happen? Yeah it's gonna be a bloody disaster it's gonna get kicked back.
Yeah it'll probably just get kicked back. So we're talking design, and design involves creating you know. Sometimes hybrid stack-ups, but we have to be so aware of where this project’s pointing.
Is it producible in production? If you're heading towards - this is going into consumer market - you have to be thinking about that at the proto level. You cannot, oh let's just do this you know, get a Ferrari with all these special processes and then think that that's going to go into mass production because that takes... By the way when you talked about Prototron and shops like that. I worked for a shop much like that and there’s guys hanging over that job, kind of hand-carrying it through and making sure that everything goes perfect. That's not sustainable in a production environment. And you know that's not always understood.
That's right it needs to be understood.
Yeah how do we get that done?
Well the awareness needs to be there. I think it gets done but it gets learned the hard way.
Yeah for sure, and this is one that makes me feel, actually a lot of empathy for engineers. I feel like they're having to learn things over and over and over again that it's like reinventing the wheel over and over again instead of there being like some recipe book or some definitive guidelines of course CID+ plus and those things are are hugely enormous Lea valuable yeah but I don't know that there's a there's a straight cut and dried answer for that because it's complex process.
Yeah back to the CID - you know the guidelines - the CID program - points the designer to our specifications and again I'm a big proponent of not only getting designers out to the board shops, EMS shops, but out to the trade shows. I mean if you're a designer, I ask the students in the CID courses. Y'all been to trade shows y'all been to APEX or PCB West, or you know SMT shows and Design Con like we are here right now? If you haven't been out to these shows you might be missing out. This is not only a great place to shake hands and talk to people that are in the business of you know, selling of the products, but it's a network. Just like we're doing right now, it's a networking opportunity and a lot of what you're learning as a designer is going to come from networking
And in a tradeshow, you can do it like at hyperspeed. You can take in so much in two or three days like drinking from the fire hose level - like you can so much!
Yeah yeah, well that's me others that to drink it from the fire hose and then drinking... So you know you can take in so much information in that period of time. So how often do you teach the CID courses?
Ep Tag has been a instructor - supplier of teachers - for many many of the IPC specifications there. They're based back east in New Hampshire, and they have - for the CID program - they have a dozen or so instructors. Again these these instructors were pretty much hand-picked out of the industry to be able to go out and teach these classes. However, you know a lot of them, myself included. We have day jobs right? It'd be nice to be teaching - the teaching is so positive - I would love to do it every day but I would never want to get burned out and the travel involved... because they're offered all around the United States, Canada even down in South America. We have instructors like Mike Creeden.
Mike Creeden he's like a globetrotter.
Yeah he is he's putting lots of miles on doing classes down South way-
Yeah, WAY down South,
We keep it to you know, three to four classes spread out among the instructors. Yeah so keeps it fun, keeps it manageable and and keeps us fresh I guess.
So it's about time to wrap up but I feel like we just got started we could go on and on. But thank you so much for this conversation.
Oh, my pleasure...
-and boy I really see eye to eye with you. I bet you've articulated it's so much better than I could so, thank you so much Kelly. Okay my last question for you - I think I already know the answer - when I ask it. So at the end of the OnTrack podcasts, I've observed that many people who are designers have interesting creative hobbies or things they do. So this part of the podcast, we call ‘designers after hours.’ So I know one talent you have after hours. So tell me what you do for fun with that creative brain of yours after hours?
You know I just recently moved to Spokane so there's not many after hours. After hours gets dark really fast up there, in the wintertime. However in the summertime it's just the opposite. We have lots of daylight up in the Pacific Northwest and I don't know if this is the answer you're looking for, but one of the purposes of the movement up there was to fulfill a bucket list of getting a hobby farm and raising cows,
No way! I wasn’t going for that, but that’s cool.
I know you weren’t so we did the hobby farm part. We moved to Spokane…
When? Wait time out, what’s a hobby farm?
A hobby farm is where you really don't know what you're doing some folks call it gentleman farmer but that's too nice of a term. I call it a hobby farm and so far we've got the chickens down we had 16 chickens laying eggs and we have 26 acres - and a barn - that we're gonna put cows on. But a sage old guy, one of my neighbors told me: You know Kelly - I asked him about what do you need to do to get cows going - he says, the first thing you need to do is build good fences. So, for two years now I've been trying to build good fences and the only thing I've been doing is tearing them down in the industry by shaking hands. How's that for an ending, yeah tearing down fences, shaking hands with the stakeholders!
That was corny! You’re a stand-up comedian as well. What I was really pointing at - and then I swear we will stop talking - is about your musical outlet?
Oh that, yeah did a lot of really really fun stuff over the last couple decades with the Porch Dogs, remember Pete Waddell and the Porch Dogs?
Oh my goodness, yeah they used to play at shows sometimes by the way.
Every time yeah it was - or it it's even fun to think about. So I'm a hacker, I uh play a little blues harp and a little guitar I'm a guitar hacker but it's another thing where this industry needs an outlet and interestingly enough the designer type is typically right brained.
Right that's what I'm saying.
A lot of them are musicians or like Bill Brooks’ sculpting I don't know... I really love hanging out with designers.
Yeah so to get together - you know it was a natural occurrence to just start playing music and jamming it. So Pete Waddell was a great mentor for me way back.
So, for our listeners, Peter Waddell is the publisher at UP Media, so not only an industry guru but founded the Porch Dogs.
Yeah, yeah, and so we played and played and I met so many great people through that and we still carry on. At trade shows somebody will bring their guitar, somebody will bring a harp and that's all we need.
That's all we need - fun! Okay Kelly thanks so much for joining me, I could talk to you all day, it's so great to connect and you only get to connect at trade shows.
It’s my pleasure Judy.
But now I want to come to your hobby for…
Where are your boots?
I have them I suppose. Well that's it for this edition of OnTrack Podcast. Thank you so much for joining and we'll see you next time.

Tuesday Mar 20, 2018
RF and Microwave PCB Design with John Bushie from ASC
Tuesday Mar 20, 2018
Tuesday Mar 20, 2018
What material do I use? Many PCB designers ask this question. This is an episode about RF and Microwave PCB Design as well as Design for Manufacturing or DFM and it will help you to understand material choices and where to get answers about high speed laminates. Join John Bushie, Director of Technology at American Standard Circuits and Altium's Judy Warner in a discussion about High Speed laminates and the exciting world of RF/Microwave PCBs.
Show Highlights:
- John and Anaya's new book on iConnect007 about RF/Microwave PCBs
- You can design something that meets IPC standards and still have problems.
- What kind of material do you need? That depends.
- There's what you simulate, and then there's physics. Physics trumps theory.
- PCB101, a manufacturing educational experience pioneered at ASC
Links and Resources:
- American Standard Circuits website
- The Printed Circuit Designer's Guide to Fundamentals of RF/Microwave PCBs
- The Printed Circuit Designer's Guide to Flex and Rigid-Flex Fundamentals
- John Bushie on Linkedin
Hi everyone, this is Judy Warner with the OnTrack Podcast, welcome back. Today we have a really great guest for you. I'm really looking forward to sharing my guests with you and please, if you would follow me on LinkedIn or on my Twitter which is @AltiumJudy and if you would like to follow Altium you can go to our Facebook, Twitter or LinkedIn profiles.
So let's get started. Today I have the great pleasure of being with John Bushie who is the Director of Technology for American Standard Circuits which is outside of Chicago area and ASE specializes in both RF microwave circuits and also flexible circus but today I want to talk to John about a new micro Ebook that they have published through iConnect007 and this book is near and dear to me.
Some years ago I wrote a guest blog on a microwave journal because so many RF and microwave engineers and just engineers in general are being tasked with designing their own boards. And particularly in the RF and microwave space a lot of these designers, these guys are designing boards and haven't had the opportunity to spend a lot of time in a fab shop.
Yeah, and they really just don't get a chance to be exposed to as much as we do being a fabricator. Since a lot of the people at our organization tend to be a little bit grayer in appearance we all have a lot of experience and the reality is is we can share this with them. One of our most important jobs is being able to educate them, and that's really how I think of myself, educating other people sharing the knowledge that I've gained over the years and just trying to help them out with their designs because ultimately we just both want to be successful.
Yeah absolutely and as you know, I spent 25 years or so in the fabrication industry and when I had a stint in the RF and microwave industry and it was like culture shock, John, like it just felt like a whole different animal, it was like drinking from the fire,
Were you working with the designers at that time?
Yeah so it was like... and I felt completely inept at first when I started there to talk about laminates but all of a sudden we're talking about performance instead of just mechanical dimensioning and making…
- sure we're just used to meeting specifications right?
Right!
- And those have a physical dimension to them and the route is you start getting into this realm of higher frequencies and you start to find out what's really important to these designers.
Yeah, and I started to feel it, the more and more I learned the more kind of stupid I felt and the more I realized; holy cow there are so many ways that a board shop could screw up and there's literally…
There’s literally thousands of different ways we could manufacture the same board and the reality is is we always have to try to manage any of the risks that the design presents and certain aspects of certain designs actually will will present problems, or they'll complicate other features that are important to the RF designer’s ultimate performance goals, and so working around those issues is what is so exciting about it.
It is exciting.
It's really challenging and fun and what was really stunning to me is to really get to the point where I realized; oh my gosh we could be 100% compliant to IPC standards...
-and still have something that doesn't work...
… and make a trash board - that's exactly correct.
Because you know we’re within tolerances so we did a little of that, but you know what, if we over etched and you know that circuit had a little too much under or over etch or whatever that the performance went to heck and and they're like, no this is not what we simulated in and we're like, too bad so sad it's the IPC standards so it's a lot more complicated. So why don't you go ahead and talk about, sort of this is now? This is a book I wish I had enough brains to write so I'm glad you did.
Don't give me too much credit.
So why don't you tell us a little bit about it? Well first why this book?
I just wanted to share the knowledge that I've gained and I've had the opportunity and the great fortune to be able to work at several world-class fabricators. Poly Circuits in my early days helped get Mega Circuits into PTFE materials and now with American Standard circuits. But in the middle there - I was also able to work for an RF circuit board laminate company at Taconic. Well I got to work very intimately with the designers in North America as well as Asia and Europe so it's the ability to be able to interface with what are some of the most brilliant people I've ever met just taught me so much and when you talk about coming into something feeling completely ignorant… well that was me a long time ago and the reality is now I I hope that I can share some of the knowledge that I've gained through all this experience.
So since I know you've been it Taconic you probably told me that before, and just wasn't remembering it. But let's just pause there for a second and just talk about composition of high speed materials.
Sure.
Because that was kind of the first place I started and the realization of you know with Upper 4 you've got some fiberglass resin…
- resin, glass, maybe fillers and there you go and you're off to the races. Now talk about high speed materials, the different compositions what, they are?
What they are and… traditionally high-frequency materials were generally all PTFE based and what that meant in the early days is that there was very few flavors I think everybody knows the term Duroid. great materials fantastic from an electrical performance standpoint. But some of the mechanical properties were perhaps a little lacking and that's really the largest improvement we've seen in materials throughout the years.
It’s the increase in strength and dimensional stability of these materials which makes it easier for us to fabricate because honestly if a material moves around a lot during the physical stresses that we put it through then we have tendencies to have registration issues, or it causes other issues within our manufacturing. The biggest change in the materials nowadays is the change to higher thermal conductivity materials. That's where we see the market going and respect to those types of products as the power levels go up and designs get small. Everybody's got to deal with these heat issues that they've got.
And I'm sure automotive is driving a lot of that.
Well automotive does too... that's an interesting… another realm that we're talking about, is these very high temperature materials and a lot of the underhood automotive application. It's something we just get a little bit of exposure to but it's also a very interesting field.
Yeah just one of the things you mentioned too are... I neglected to mention to our listeners that we are here at Design Con in Santa Clara, so if you hear some voices in the background it's because we're here at a trade show and so just wanted to mention that so ASC is here with a booth and also rolling out hard copies of their book so. So the going back to the laminate side. So, I know from the RF experience I've had that each of these compositions of materials behave differently right?
Mm-hmm.
Like when I think of PTFE distinctly and there's a completely different system, you know?
Distinctly, and when you go from the the thermoplastics to the thermoset materials both have their advantages you know. PTFE is a fantastic material in that it's largely inert. It's inert to the effects of high frequency radiation and it doesn't change and that's what yields the fairly consistent results that you get with PTFE materials.
Now there's the introduction of the lower-cost thermosetting materials that also have pretty good electrical properties and that that can be a huge benefit just in the rigidity. Overall dimensional stability and the fairly low CTE values you know. At the same time, they've been filling PTFE materials for years in order to alter their properties and they've actually done a phenomenal job and bringing the CTE values very close to those of copper, which is the ideal since every board, every layer is clad with some level of coppers.
Right.
Yeah I mean we could devote…
You know I this is an interesting subject and there's a new material that comes out virtually every couple months all right and there's just a lot of good materials out there there it really is which is really what the whole key to this.
Yeah which is really actually good for industry great for designers right?
Which is why when we get asked the first question that everybody asks is what's the right material for my design. That's an impossible question to answer on the face of it but the reality is, as we dig deeper and deeper into these designs, we can kind of get a sense of where their price sensitivity lies, what level of performance they need, and just just seeking to go through the process and understand what their requirements are.
Before we got down that road... if I read - I had the pleasure of reviewing your book before it got published - and don't if I remember correctly. Don't you have a chart there or is it on your website that shows, like side by side, all the differences?
We do, it compares all of the various laminates that we use and actually, I had had a ex-colleague from that company that I used to work for mention that.. hey I left out a few of the most recent materials particularly in Europe. I apologize Manfred, I did not know that there were materials released, but thank you for catching that and I appreciate your insights. Because you know again going back to that subject. I've been phenomenally lucky to have worked with some fantastic minds as well as fantastic people in this.
Which I'm sure is an awesome asset for you at ASC. So okay so give us a quick rundown again. This is a micro book this is not a textbook?
Yeah and it was never intended to be a treatise on the subject it's really to touch on some of the major - I'm gonna call them issues for lack of a better word - because if we don't deal with them at the beginning of the design they can end up taking what is otherwise a fantastic board and make it virtually non manufacturable and this is really about DFM.
It really is.
You know we go into all the subjects - obviously not every subject as it relates to circuit boards - but from material selection, to copper roughness, to choosing the right stack ups and balancing your constructions whenever possible. How does copper thickness play a role in the ability to be able to manufacture? To find fine lines and spaces, edge plating, cavity constructions, thermal management. It touches on that wide variety of subjects and it just kind of gives you an overview of what we deal with. What to be thinking about when you're going through this process and hopefully it'll be an aid.
Yeah well, I can imagine that this will be a great sort of starting place because I'm sure you get asked these same questions over and over again?
Yes and the reality is, is we want it to start the dialogue right you know - and we want to be able to put something in your hands that can aid you right now. But also help you think about certain aspects so that we can work together right. We've dealt with some designs that deal with basically a composition of every circuit technology known to man in one board but since we've worked so in-depth with this customer for a very long period of time we've ended up balancing out the performance requirements that they need with our ability to be able to manufacture right. Because it doesn't matter whether it's the highest performing smallest assembly in the world, if we can't make it or we get 10% yields, it's it's not going to end up satisfying the customer.
Yeah and that's another thing I remember feeling kind of pounding my head against a wall like you know now that I'm on the EDA side of the market right, there's such good powerful EDA tools out there and, but they won't necessarily flag you and say, no dummy you can't...
Yes indeed you're right, and that's exactly what ends up happening. I mean we've gone through designs where people expect to get a certain level of performance and all the materials are there, the components are there and we find that one aspect was missed and you know, there could be copper roughness. Oh we didn't account for that right. So you know we get, hey I'm getting minus 3db down from what I expect to be getting that's a huge loss it’s almost double.
Yes so there's what you model and then there’s reality.
My friend used to say, there's what you simulate and then there's physics.
Exactly then there's, yeah physics gets in the way right? And then John Toussaint who actually works for you guys, his favorite line used to, be physics trumps theory.
Right very true.
Right? So you know there's just limitations to what we can manufacture so well this is a really, really great again as I said I wish I had the ability to be the one that wrote this but I'm so delighted. I think it's truly a great service not only to your customers but just to the industry to get this information out because it's sorely needed and to my ability no one has really put this out you know...
No I'll be very honest if an a hadn't worked so hard on this project it never would have been realized either so thank you for pushing on this project and driving it forward I do think it will be helpful to great many people and who knows, maybe there'll be some addition to this in the future.
Yeah that would be great and I know you guys have written one actually which maybe is another Podcast series we can talk about…
The rigid flax which is that is becoming more and more.
We're actually seeing the two integrated in some instances. Yeah when I was referring to that one design that's exactly what we're talking about. Yeah IMS flex RF FR4, multilayer blind and buried vias and flex later. Right and the middle core I'm sorry I left that out.
Oh good lord... but manufacturable - piece of cake! Can’t you give me. you know $10 off that board John?
Sure exactly we're gonna deal on price, but you know, you do what you can there and you know you've got to try to make it. You've got to try to make it successfully and usually we try to make it for a cost.
Of course like people, not everyone really understands. I wish I could take every designer and engineer and they would be like forced to go through board shops like five times.
You're right. I mean we even created a tool for that called PCB 101 just to kind of give you a good overview. Once you start breaking it down and you think of the circuit board processing as each path is in itself a process right. Then you start to add up all the processes that the board is exposed to as it goes to the manufacturing operation. When we get to some of these complex designs it might be going through 150 - 200 different operations.
Yeah, exactly right.
And all of them have potential risks so absolutely...
Yeah people don't really… you know, we've come to sort of take for granted printed circuit board manufacturing. I think we're all impressed with semiconductors and their performance and bla bla bla - boards are… they're dumb and they’re just boards and they just lay there or whatever.. except unless that that board is made right none of those parts work.
And with high-speed digital ou have controlled impedance with RF its dielectric constant line width and loss. So I mean you've got one or the other.
Yeah and now with the added dimension of thermal management, since people are becoming a much more... which is fantastic because it can offer performance levels that weren't even theoretically possible just you know five ten fifteen years ago you know.
So let's talk about where people can find the book first which I think is on the iConnect007 website correct?
That's correct.
And and then where can people find more information about ASC John?
They can go to www.asc-i.com.
Okay let me check that one more time - www dot ASC (that’s American Standard Circuits) dash-i dot com - okay very good.
So is there anything else that I may have not covered or asked you relative to this awesome book you just put out?
No it's just all I do, is just encourage people to give it a read, say that it's downloadable for free.
Yes it doesn’t get less expensive right?
It doesn't get less expensive.
So you basically just put in your name and your email and download it and it’s a PDF right? So it's a digital ebook.
I'm gonna look over just to get a little bit of agreement, that is in PDF form is that correct?
Yes it’s in PDF form.
Excellent okay PDF form and, here at Design Con you guys have brought a limited number of hard copies to give away so I'm sure those will be appreciated and and I'm sure once you start getting readers you'll probably end up printing out more of those but, well thanks so much for your time okay.
So now for the fun stuff I'm going to ask you two fun questions. First what is your favorite techie gadget that you own?
Wow that's difficult…
Like that you can't live without...
Well I mean everybody's gonna say their smartphone nowadays but besides that, yeah I'll be honest, no I always go back to home entertainment. I'm sorry okay.
Well hey that is totally okay. Do you have like a pimped-out home entertainment?
I have a pimped-out setup at home.
Okay let's hear it let's hear the specs!
It's got over a horsepower of wattage, it’s considerable it's got 13 speakers. It's a little excessive - nuts. People say I’m nuts when they go into my house but that's alright.
Is it like a home theater.. little home... wait how big is your screen?
It's only 60 inches I'm trying trying to talk five feet I'm trying to talk the wife into the 80 inch OLED but for some reason that thirteen thousand dollar price tag is a little steep. So we're gonna wait for the price point to go down.
My second question is… I know you're not a printed circuit board designer but a lot of us techie people have kind of interesting creative hobbies and things.
I'll be honest I'm the exception to that. No I shouldn't say that actually... actually I've been a bit of a computer nerd always have been, uh used to spend way too much time on computers. I think I set my first network up at home to be able to online game with, or at least network game with buddies back in 93.
So you're dating yourself?
Yes I am.
I was there.
Right but I know you can't stop getting older Judy, so...
That's right.
Okay I decided I'm gonna start counting backwards on my birthdays, that's how I'm solving that.
Okay so anything else or shall we wrap up here? Is there anything else you wanted to share that I might have left out John?
I think we pretty much covered everything Judy, appreciate the opportunity.
Oh and is there anything of note that you guys, other than booths and talking to a whole bunch of people for a couple days. Is there anything else that you guys are bringing besides your book to this show that may be of interest to or listeners?
I don't have any specifics that come to mind. I mean the reality is this is what we're working on right now. We're bringing this effort forward and hopefully, like I said, people will find value in that but the nice thing is there's our rigid flex expert Dave Lackey and myself so when we come here we try to bring some value to the people that might stop by
Okay so while I have you recorded on it, will you promise to say... send Dave Lackey back to talk to us about rigid flex?
Well we will round them up and send them in here okay?
Great tie them up okay!
Great well John thank you so much and thank you again for taking the time and effort to put this book out. I think it's going to be of great value to the industry for certain. Your customers and I really appreciate that laminate chart you put together - I wish I had that a long time ago.
Exactly.
Well thank you very much and have a great show.
Thank you again this has been Judy Warner with the OnTrack Podcast please remember to subscribe and add us to your favorite RSS feeds and we look forward to talking to you next time and always stay OnTrack.

Monday Feb 19, 2018
Monday Feb 19, 2018
More than ever, people are doing Flex and Rigid Flex for the very first time as industries drive for smaller, more user-friendly devices. Join Altium's Judy Warner and OmniPCB CEO, Tara Dunn for a conversation on industry trends and cost drivers.
Show Highlights:
- What is driving growth in the market? Space, weight, packaging.
- Flex is everywhere especially handhelds and medical devices, uptick in flex and rigid flex PCB across every industry.
- Three main cost drivers for Flex and Rigid Flex: Materials selection, Panel utilization and Technology.
- And a fourth consideration - understanding your fabricator capabilities and making sure you’re matching your design to their capabilities.
- Most common materials: copper and polymide.
Links and Resources:
- OmniPCB Company website
- Tara Dunn’s AltiumLive presentation
- Geekapalooza
- PCB Advisor site
- Flex Talk
- FlexFactor by NextFlex
- Jabil’s Blue Sky facility in San Jose
Hi everyone, this is Judy Warner with Altium's OnTrack podcast. Welcome back, if this is your first time we're glad to have you. Before we get going today I've got a great guest for you, but before we get going I wanted to remind you to please subscribe to this podcast, and you can follow us on iTunes, on your favorite RSS feed, or wherever, whatever app you like to use for your podcasts.
Today I have with me Tara, oh before I get going on Tara I wanted to also say, please follow me on LinkedIn and also on Twitter, I'm at Altium Judy, and Altium you can also follow us on Facebook, Twitter, and LinkedIn. Okay, Tara, hi my friend, so good to see you, welcome to La Jolla, California.
Thank you.
So, Tara was a recent, is a dear, dear friend of mine in the industry. There's not many of us women that have actually been in the printed circuit board business and understand how circuit boards are made, but we do indeed know how that's done, and Tara owns OmniPCB. She's based in the Minneapolis area, and she is a real flex expert, and we've been friends for, how long has it been now?
I don't know, what six or seven, eight years? Probably something like that. Anyways, Tara and I met at a trade show and instantly started introducing each other to our friends and colleagues and next thing you know, we just created this energy, and we both have written columns for iConnect 007. Tara has an event in Minnesota called Geekapalooza.
Which Judy helped bring out to California. California, so I brought it out here to Irvine, and then we brought it together to Boston, so we've had lots of professional adventures together, so it's my joy to have you and for us to
learn more about your expertise in flex. So, how are you liking La Jolla?
I know you're here for a few weeks, I bet you're glad to get out of the snow.
Oh yeah, it's no hardship to leave Minnesota winter this time of year.
I'm loving the sun and the beach, so like- What was the temperature when you left?
Minus five, something like that, and slippery roads and cars were going into ditches, we're driving to the airport I'm like "just please make it there so I don't miss my flight"-
Oh my gosh. -and I landed here, it was sunny and beautiful.
Right? I know.
I know, that's why we like it here. It's expensive to live here, but we love it.
So, welcome to the La Jolla office, anyways. So we want to talk today about your deep knowledge on flex circuits, which are becoming more and more commonplace, right?
You and I started out in our careers really focusing on Rigid FR-4, very standard boards, but it's really evolved now. Oh yeah, flex is a significantly growing portion of the market.
And what do you think's driving that?
Space, weight, packaging. You know, it's small it can be smaller, lighter, folded, it's really perfect for all of those electronics, the handheld electronics, medical devices.
Right. So what would you say, give us an overview, you just said medical devices, what other things are you seeing an uptick in the flex market?
You know, really across the board. Across all industries.
Really?
Absolutely. You know, we've got companies that have been working with flex that are developing maybe more complex flex or rigid flex and, you know, easily once a week somebody's contacting me brand new, just trying to figure out how to work with flex and how to design flex and what's different, what do I need to know. So a lot of new applications cropping up are people that are just trying it for the first time.
Well, that's why we invited Tara to be our flex expert at this year's Altium Live, and we'll share the link below but there's a really great presentation that Tara gave at Altium Live, and we have the video and her slide deck, so we'll share that at the bottom here so you can check into that later.
So, let's talk a little bit about that presentation. That was speaking a lot about cost drivers. So, for the designers and engineers listening, what are some of the just overview, basic overview, of what cost drivers are for flex and rigid flex?
Okay, so we often talk about three primary cost drivers, materials selection, panel utilization, and technology. I kind of like to throw, a little bit tongue-in-cheek but not really, a fourth one in there, which is understanding your fabricators capabilities and making sure that you're matching their capabilities with your design. Yeah. That's not just true in flex, by the way.
True, it's across the industry. It's across the board.
Yes. [laughter]
So, start with materials. How does that affect cost? Okay, so there are just so many materials you can choose from with flex, so, but just for this quick discussion let's focus on the most common which is copper and polyamide.
So, even focusing just on that segment, your fabricators are going to purchase laminates. They come in generally three different types which would be, two of them are adhesive-based, one with a standard acrylic adhesive, one with a flame retardant version of that adhesive, and then adhesive-less materials.
So, all of those types come in a range. Typically your copper thickness is going to be a quarter, or a half ounce to two ounces. It doesn't mean you can't get a flex circuit greater than two ounces, it just means that your fabricator has to create the material themselves.
Right.
And polyamide thicknesses are generally between half mil and six mil.
When you said your fabricator has to create that, does that mean they actually take the material and plate it up in their tanks, or you're buying a specialized material from the materials supplier?
Right, you would buy the polyamide, the adhesive and the copper and the thicknesses that you need.
So, like I said, huge range of options that you have when selecting materials for flex. So cost drivers, keeping that in mind, you know, why would you choose one over another or how does that progression go?
Typically, the adhesive-based options are going to be a little bit less expensive.
Okay. Okay, and they are typically used in single- sided, double- sided, maybe three or four layer flex is where you'll see those applications.
As you go into higher layer count, or rigid flex, the adhesive-less material becomes necessary. Highly recommended for rigid flex.
There's a z-axis mismatch between the FR-4 material and that acrylic adhesive, so you don't want to introduce the acrylic adhesive into the FR-4 stack-up.
So that's why, you know, your fabricators are always going to recommend adhesive-less materials.
All right, that makes sense. Mhmm. So, it's kind of like cost versus function-
Right.
-at certain point-
Right.
-that you need to keep in mind.
Right. So, other than materials, I know, what are other things that help drive the cost? I mean I think that's what people are afraid of, right? They think "oh flex is too expensive, I can't go that way" but they really need to go that way, route, for functionality, and I think really what you taught us at AltiumLive was it's not that cut-and-dry, right? If you evaluate all these different things then it may not be as expensive as you think.
Exactly, and as you decide to move to flex, you know, working with your fabricator on the materials side specifically can really help drive out cost.
Is it looking at just the raw material? You know, you're generally going to be FR, flame-retardant, material, LF adhesive, and adhesive-less, but if your fabricator is building a lot of rigid flex they're gonna stock more adhesive-less materials, and your adhesive-less material is gonna be probably less expensive-
Because they're buying more of it, they have it in stock you don't have to worry about minimum.
Make that match, and so finding someone that does a lot of flex and rigid flex is going to help you right off the bat. Exactly, and understanding the material sets that they're using, and you know a great way to do that is to ask their field applications engineering group to help you with a stack-up.
'Cause if you're not directing them in a certain direction they will default to the material that they're using most commonly.
So it's a really good way to make sure you're fitting that gap. Right. So what are some of the other cost drivers?
You know, we look at different types of coverlay. Coverlay kind of follows a progression.
So like, explain what coverlay is. So, with flexible circuits there's two types of coverlay.
There's a flexible solder mask, which is very similar to our board type solder mask other than formulated to be flexible but applied the same way.
It's a good option for circuits that might be single sided, double sided or less than two ounces of copper. Okay.
Tends to be a little bit less expensive. I see.
It does have a limitation in flexibility. It is flexible, but if you're having a highly dynamically flexing application it's probably not your best choice.
Right. But another advantage is it does allow you to form those nice 90-degree angles on your surface mount pads.
Of course. But when you need to, when you're concerned about reliability for flex life, the polyamide cover length, so it would be the polyamide that's the same as your base material and a layer of adhesive.
That would be the next option that you would want to go to. The limitations on that tend to be, you know, because you're drilling or routing that coverlay, you're gonna have a round or an oval opening.
Oh, okay. So as your circuits get more and more dense, it gets more and more difficult. We jokingly call it the Swiss cheese effect-
Right, you drill it and you take off the back route entry and there's not enough material there to even hold it together. You know, it looks great on the screen when it's this big but when the part's little. So your fabricator will watch out for that if you're doing a design. We all do try to minimize that impact.
The circuit board designer may be asked to gang open or, you know, make a larger opening over several pads to kind of alleviate that problem. And then continuing on that cost spectrum if you need the polyimide coverlay and you need that individual pad coverage, laser-cut coverlay would be the next option.
Okay. So that allows you to get the nice 90 degree angles for the surface mount pad, much tighter registration.
I would think from a cost standpoint too, in this case like laser cut, again a fabricator that doesn't do a lot of production of these kind of circuits may not have that equipment, may have to send it out, which drives the price up.
Exactly, exactly.
So, you know, I could see, that would be another benefit to making sure you're finding a fabricator that's really good at this technology.
Exactly.
Okay. Are there other areas or did we did exhaust that one?
I think on the materials, yeah I think that those are the two primary things to look at, is the base material and the coverlay.
Okay.
So, it's always easy to kind of relate to that if we can hear a case study or an example that you've had, you know in your career, is there a couple stories you could tell us?
Sure, sure. So, there is a medical application, for example, and trying to reduce the material cost it was designed as a three layer rigid flex and flex being on the outer layer in that case.
Oh on the outer layer, okay.
Because of the three layers, okay?
So, but then in this case that required the flex to be button plated to maintain the flexibility and it required the circuit to have to be sent out to laser-cut for the coverlay to maintain the surface mount pads. So those two together required it to be done on a smaller manufacturing panel for the tighter registration.
So, very expensive circuit and very difficult to manufacture. After a review with a fabricator, they decided to go to a four layer rigid flex, more standard construction. So the material costs are higher but it eliminated the need for the laser cut of the coverlay, it eliminated the need for the button plating and it was processed more standard. So although the material costs were higher the overall cost of that flex circuit dropped dramatically. So it's not always about look at the material cost and run, right, it really is about collaboration, which you and I both over the course of our careers have sang that song, you know, in a variety of circuits right? It's not, but I can see how in the case of flex and rigid flex it's even more important, right, because there's all these variables.
Exactly, and that tends, flex and rigid flex tends to be a product that people are a little less sure of themselves when they're designing, have a lot more questions, so my advice is always to identify a few fabricators that you think will be good partners and then involve your fabricators early in the design. You know, because they're doing flex and rigid flex all day.
Right.
They've learned a lot of lessons so we all might as well take advantage of those lessons. Yes, absolutely, and that reminds me, another plug for Miss Tara is that she writes a column for the PCB 007 magazine monthly?
Yes. Monthly, specifically about flex- Yep, it's called Flex Talk.
Flex Talk, there you go.
So there's another resource that, and she usually covers a lot of these in that magazine and I always, I always look forward to reading your columns. So another case study?
Okay. A second case study I can think of is a military application.
The product was, I would say having probably 90% failure in the field after assembly. So, very very expensive after a fully populated board and what happened was it's a rigid flex and it was being bent and it was cracking.
So back to the drawing board, what can we learn from that?
Turns out, simply re-did the stack up and went from adhesive based materials to adhesive-less materials.
Oh wow.
So it eliminated only three mils thickness in the overall stack up but it was a thickness, and the bend radius was causing that cracking. So by making that one simple change in that stack up, you know they've had 300 assemblies completed now with no cracking at all.
And there's the expertise, right? Like who would know that three mils could fix that problem. I would have never guessed that in-
Yeah, it seems insignificant, especially when we're used to looking at thick rigid boards 3 doesn't seem like anything at all. It doesn't seem like anything at all.
That's so cool.
Well, thank you. Those are great stories.
You know, since you and I started in this industry, there were, I'm kind of shifting subjects now, a little bit and I wanted to talk to you a little bit about women in our industry. So, there are far more women in this industry now than there used to be. There still isn't that many of us who actually are on the front lines of sales and marketing that kind of thing. How did, I know I didn't end up in this industry on purpose. I love it and I love the industry, so how did you find your way, and I don't think I've ever asked you this?
I'm here completely by accident. See? We didn't do this on purpose.
No, my first job out of college was in the accounting department of a flexible circuit manufacturer. Okay, what was your major?
Economics and industrial relations. Well, there you go.
I didn't know what a flex circuit was when I started there. Right.
Because of that, they required me to work out on their manufacturing floor and learn how to build a circuit, so I was out on that manufacturing floor for a few months.
No way, I did the same thing but- Really?
Yes, yes I-
I'm so sorry to interrupt you, but the first circuit boards shop I worked at, and they had this whole language, these terms and things I'd never heard, you know what is SMOBC and I'm like, I don't know, solder mask over bare copper, and so I asked a production manager
I'm going to come in on Saturdays and he's like, I'll put you in every department.
That was like the best education ever, wouldn't you agree?
I agree and I totally didn't appreciate it at the time.
Yeah.
But looking back I would have never learned the process as well, because I was running equipment and, I'm really terrible at registering coverlay. I've learned this. It's not something I should do. I don't have that hand-eye coordination, but it was it was a good thing to learn.
Yeah, absolutely. That's so funny, I never knew that about you.
So, what do you think we can do to sort of encourage, I mean we're doing a lot to encourage women in STEM and encourage them to become exposed to these types of careers. What do you think would be a good way, or how are some ways that you've seen, oh I know one thing you're going to tell me about right!
Okay the Flex Factor program, Flex Factor, put on by NextFlex, so centered around flexible hybrid electronics, they have a program that reaches out to high school kids and it's an entrepreneurship program that ties in advanced manufacturing.
So they go to Jabil, they get to see all the cool things, it's a month-long program.
And this is in the middle of Silicon Valley?
Yes.
So fun.
And I believe it's expanding beyond that.
Wow.
I was lucky enough to be on the judging panel at the end of one of their last ones.
So much fun, but what it does is - it takes students who may or may not be interested in a technical field, they might be interested in marketing or entrepreneurship, and it is a month program.
First week they kind of get the charter and you have to develop, it's about product development, what kind of need do you see around Health and Human Services and what how could you solve it using a product that's using advanced manufacturing?
Uh-huh.
And then they get to go into the fancy Jabil building and see all the really cool things that they do there. They tie that into the next step, is entrepreneurship at a community college, and the students are actually given credit, college credit for this program, and then the fourth and final week they need to pitch kind of shark tank style to a panel and go through the whole product development process, profit and loss, and I mean it's just it's an amazing program, and it's so fun to watch kids you know who, I talked to one girl
Jordan and she had really no interest in manufacturing or advanced manufacturing until, she wasn't exposed to it until this program, and now she's got a lot of ideas.
Which is so great! I don't know how kids otherwise would get exposed to manufacturing, and when you go into a facility like Jabil or TTM or some of these big facilities, you know I think kids think manufacturing is like a dark, dank building with, you know, I don't know, something awful and you go in and there's robotics and chip shooters and all this amazing high-tech equipment and these clean rooms and you have to wear the whole bunny suit and the glasses and you go in and you're like wow this was not what I was expecting and that's so great. I forgot that you told me about that program and the whole shark tank, which makes it so- oh it was so much fun.
-so what did the students pitch? Or like what are a couple things that the students pitched?
You know there was all kinds of different things. They tended to kind of centre around babies or athletes.
What?
Well, different injuries that you might have as a student-athlete and how to rehab those injuries.
Oh, okay.
Or baby monitoring devices.
Oh that kind of, okay.
Yeah.
So, what was the winner? Was there, is there a clear winner, do you remember?
I don't remember who won for the panel I was on because they didn't announce it the day that I was there.
All right. And so you're continuing now, right? To be involved with this initiative, and is this gonna be each year, or how often do they offer it?
They do it throughout, throughout the year. I think they just had another round that went through so, and I might mix up the numbers slightly, but I think that the first program that they did which would have been the fall of 2016. I think they had eight students participate and its teams of four. So now they are up to thousands of students participating in this program. It's just growing and growing so fast.
We're going to make sure that we put that website, so you have to make sure and share that, the URL, so people that are listening can look into that. Such an exciting program and I, you know, here at Altium we're doing so much with the universities and stuff and I love to see it happening, and it's so fun when you see the light bulbs go on and, you know, we love our industry and we want to keep it vitalized.
Yes, yes. I think this is a great tool for generating some excitement. I know, I love it.
I want a program for people our age to go back and do that.
Right? Wouldn't that be fun?
Yeah. What would we call it?
I don't know, we'll have to think about that later.
So okay, here's a really wonky question I think I already know the answer but I'm asking anyway. Are you a nerd or a geek?
Geek.
I asked the woman who runs Geekapalooza, that was a really easy answer.
I know, okay but why do you think a geek? Why is it not Nerdapalooza?
Like, why do you think you're a geek and not a nerd?
That is an excellent question.
Other than geek sounds better than nerd. See, I know, well- It's the general excitement over something that other people-
Right, like geeking out over something right? Geek Squad.
It's become cooler.
I think geeks are cooler than nerds still, like just generally. I think that's the consensus. And my other wonky question is, on a scale from one to ten how weird are you? Well, pretty high up there, yeah.
So like, what are some wonky things that make you weird?
You know, I -
Well first of all you're in this industry.
First of all it's the industry right? I laugh because I'll go out to have lunch, a work lunch, and sometimes I think if anybody is listening to our conversations, we're talking about impedance control and stack-ups and EMI and I'm like, what are they talking about over lunch?
I know I posted a video of me talking about fusion bonding on my personal Facebook page, and it blew up and people are like who are you? What are those words? They had no idea that I spoke this whole other tech language. And if you're out of the industry, you know, most of my friends, you know, my parents, my family, they don't know what I really do.
I know, I know. We're gonna put your podcast, this podcast.
We're gonna put this podcast on your- Can you cut that part out?
No we'll put it on this and see what they think of you on a podcast talking about coverlay. They'll be like what? And my final question would be, well, one thing I know about Tara Dunn is that you love the beach even though you live in the snowiest place in the country.
I live in a landlocked state.
Yeah, there's that. But I noticed that a lot of technical people have really interesting hobbies, so what kind of things you like to do with your family or places you like to vacation or things you like to do in you're very few off hours that you have Tara because you don't have a lot of off hours.
I don't, but with the job that I have it allows me to travel quite a bit because I can work pretty much remotely from anywhere and make that easy. So, yeah we love to travel.
Specifically the beach. It's one of my favorites or in the winter anywhere warm. Desert area, everything's great, and I don't know what happened this year but suddenly I've become a music buff.
Oh. I haven't been to a live concert in a few years and all of a sudden I think I have six or seven things booked so..
That's so funny.
I don't know why. It's because your son went to college and you have a little more free time. That could be it.
I don't know, I'm picking up new things now that my kids are out to college so that's probably the reason why.
Well Tara, thanks.
It's always a blast to hang out with you, and it's so fun to have you in California.
Thanks for having me here. Usually we're on the phone on conference calls and we actually get to see each other in person, it's fun.
So again we'll share lots of informative links for, that Tara has shared on this podcast and some that she didn't have time to talk about, we'll share them below so you can tap into all the interesting resources that Tara has, and I want to thank you again for what, for listening and or watching the OnTrack podcasts today. Please remember to subscribe at your favorite podcast app. Until then, always remember to stay on track.